Hi, I'm an applied mathematician at Skoltech and, part-time, at Institute for Information Transmission Problems. Previously, I worked at the software company Datadvance as an expert in data analysis and optimization.

I'm interested in various kinds of applied mathematics. Below I describe some of the topics I have worked on.

Space tether systems is an interesting class of systems, potentially useful for various purposes such as space debris removal, satellite collocation, etc. In this joint work with our Astrium colleagues we studied a "hub-and-spoke" pyramidal formation rotating about a central satellite and holding another satellite beneath it. Unfortunately, this configuration requires a relatively high fuel consumption.

So, in this paper we
proposed another, *freely moving* (no fuel!) formation serving
the same purpose. Instead of a circle, deputy satellites now move
along Lissajous curves. We find relations between the system's
parameters ensuring that the satellites and tethers never collide and
the main satellite remains immobile, and show how all these relations
can be satisfied.

Interestingly, the model seems to be especially stable if there are at least 5 deputy satellites. Also interestingly, the tethers can get entangled during operation; we have been able to only partially demarcate the cases of absent or present entanglement (based on the winding number invariant).

In this post I tried to explain in simple terms the idea of SBO and its most natural version based on Expected Improvement (EI).

My research in this area concerned the following question: can EI-based SBO fail, in the sense of never getting near the true global optimum? The expected answer is "yes", but the proof is not obvious because the behavior of SBO trajectories is not well understood on a rigorous level. Nevertheless, in this paper I give a rigorous example of failure in a sort of "analytic black hole" scenario.

In this paper I developed a quadratic form-based perturbation theory and used it to prove that small perturbations of the AKLT model remain gapped (which was widely believed, but hard to prove).

In this paper (preprint) I prove uniqueness of the ground state of a weakly interacting system in a strong sense involving "most general quantum boundary conditions", and discuss how one can interprete these conditions.

In this paper (preprint) I show that the so-called "commensurate-incommensurate transition" in the AKLT model can be explained by a peculiar Poisson-type random walk with a single reversal.